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A HYBRID TECHNIQUE FOR SELECTING SUPPORT VECTOR 

REGRESSION PARAMETERS BASED ON A PRACTICAL 

SELECTION METHOD AND GRID SEARCH PROCEDURE 
  

Abstract. In order to enhance the generalization ability of the practical 

selection (PLSN) method for choosing the optimal parameters of the support vector 

regression (SVR) model that was proposed by Cherkassky and Ma (2004), we 

investigate a new hybrid technique that combines the PLSN method and the grid 

search procedure. We explore this and find it to be suitable for different types of 

additive noise including Laplacian noise density. We show that the proposed 

parameter selection for SVR achieves a good generalization performance by 

testing several regression problems (low- and high-dimensional data). Moreover, 

the proposed method is effective for finding the optimal parameters of SVR for all 

kinds of noise, including Laplacian noise. The generalization performance of the 

proposed method is compared with that of the PLSN method, with some numerical 

studies for Gaussian noise as well as non-Gaussian noise. The results show that 

the proposed method is superior to the PLSN method for various types of noise.  

Keywords: machine learning, support vector regression, parameter 

selection, grid search. 
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1. Introduction 

The support vector machine (SVM) is a powerful approach in the machine 

learning community, and has become one of the fundamental fields in artificial 

intelligence during recent years (Frohlich and Zell 2005). It has been successfully 

applied to regression problems as well as to classification problems. However, the 

generalization performance of SVM depends heavily on the right selection of the 
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hyper-parameters C and ε, so the major issue for practitioners attempting to apply 

SVM is how to set these parameter values (to guarantee a good generalization 

performance) for a training data set (Wang et al. 2003). Since the set of parameters 

of SVR should be defined by the user, this tends to make it of limited practical use 

(Üstün et al. 2005).  Hence it is very important to focus on selecting the tuning 

parameters of SVR. 

In the literature there are some practical methods of choosing the 

parameters C and ε. Cherkassky and Mulier (1998), and Vapnik (1998) proposed 

that users select the parameters C and ε based on their experience and their prior 

knowledge. However, this approach is not suitable for non-expert users, since we 

are dealing with an unknown underlying distribution of the data. Mattera and 

Haykin (1999) proposed that the value of the parameter C be set equal to the range 

of the dependent variable. But this approach is not appropriate, given the possible 

existence of outliers in the training data. At the same time, they recommended 

choosing the value of the parameter ε so that the proportion of SVs in the SV 

regression model is around 50% of the number of samples. However, an SV 

regression model that is built on the basis of a few support vectors is not always 

applicable (it may result in large prediction errors) (Üstün et al. 2005). Kwok 

(2001) suggested an asymptotically optimal ε value that is proportional to the 

variance of the noise. According to Cherkassky and Ma (2004), this technique has 

a drawback, as it does not reflect the sample size. They strongly recommended that 

the value of the parameter ε should be smaller when the data for larger sample 

sizes has the same noise level. Trevor et al. (2001) proposed estimating the 

parameter C using cross-validation, whereas the parameter ε can be optimally 

tuned based on noise density.  

The standard and optimal method to choose the optimal parameters C and 

ε is a grid search (GS) (Ceperic et al. 2014; Liang et al. 2011). This approach was 

initially applied to find the near optimal parameters C and ε for classification 

problems based on parameter ranges (Hsu et al. 2003), but soon this grid search 

technique was adopted by other researchers and used additionally for regression 

problems (Bao et al. 2004). The main downside with the grid search strategy is that 

it is extremely time-consuming (Ceperic et al. 2014). Cherkassky and Ma (2004) 

proposed a new analytical method for the selection of the value of the parameter ε 

as a function of sample size, and the parameter C as a function of the dependent 

variable directly from the training data, rather than following the cross-validation 

approach commonly used in support vector machine applications. This approach 

takes into account the sample size and the possibility of the existence of outliers in 

the training data. It has good generalization performance for various types of 

additive noise; however, it is not suitable for Laplacian noise density (Cherkassky 

and Ma 2004). The Huber’s loss function (least-modulus), which is a special form 

of ε-insensitive loss function when  should be used for a Laplacian noise 

density model (Cherkassky and Ma 2004). Üstün et al. (2005) proposed a new 
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approach using genetic algorithms and simplex optimization. Frohlich and Zell 

(2005) proposed a new technique for the selection of parameters for regression as 

well as classification tasks, based on the algorithm of global optimization (EGO). 

Zong et al. (2006) introduced a new technique based on a particle swarm 

optimization (PSO) method for the selection of SVR parameters, but with this 

approach it is easy to fall into local optima, which would lead to a low optimization 

performance (Liang et al. 2011). Lahiri and Ghanta (2009) suggested a new 

method for the optimal tuning of the SVR parameters. This technique blends a 

hybrid SVR method and a differential evolution method (SVR-DE). Liang et al. 

(2011) proposed a new technique that they named the chaos differential evolution 

algorithm (CDE), which merges differential evolution (DE) with the chaotic 

searching algorithm. 

Cherkassky and Ma (2004) concluded that there is no general agreement 

on the optimal method to set the SV regression parameters. Indeed, until now there 

has been no completely general way for selecting the parameters. Thus, in this 

paper we investigate a practical approach that combines the practical selection 

(PLSN) methods that were introduced by Cherkassky and Ma (2004) and the 

standard method (grid search), to enhance the generalization ability of the SV 

regression model. We also try to find an appropriate method for all types of 

additive noise including Laplacian noise density.  

Section 2 contains a short introduction to SV regression. In section 3, a 

brief explanation of the proposed and the PLSN approaches for selecting SVR 

parameters is given. Section 4 shows empirical comparisons for nonlinear target 

functions (low- and high-dimensional) that are corrupted by two types of additive 

noise, Gaussian noise and non-Gaussian noise. Finally, our conclusions are given 

in section 5.  

 

2. SVM for regression 

The support vector machine (SVM) is a new machine learning approach 

that was derived from statistical learning theory and was established on the 

principle of structural risk minimization (SRM) (Cortes and Vapnik 1995; Dhhan 

et al. 2015). In the SVM the relationship between the input  and the output  is 

learned directly from the data, without any assumptions about the underlying 

probability distribution (Tezcan and Cheng 2012). Consequently, it has some 

obvious advantages such as being globally optimal, having good generalization 

ability, having a small sample size and being resistant to the over-fitting problem 

(Vapnik 1999). 
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2.1 ε-insensitive SV regression 

In the support vector regression, the input  is first mapped onto a high-

dimensional feature space, which is nonlinearly related to the input space, using a 

kernel function that transforms the input space into to a high-dimensional feature 

space in which non-linear relationships can be represented in a linear form (Smola 

and Schölkopf 2004; Vapnik 2000). The linear model (in the high-dimensional 

feature space) is given by 

 

 
 

Where  denotes a nonlinear function that maps  into a higher dimensional 

feature space, and  and  are the slope and bias term respectively. 

 

The idea behind an SV regression (Vapnik 2000) is to estimate the 

coefficient values  and  that optimize the generalization ability (predicted risk) 

by minimizing the following ε-insensitive loss function  

 

 

  

In order to find a function  that is as flat as possible and gives a 

deviation  from the output ( ), a smallest  would need to be found. This can be 

done by minimizing the Euclidean norm  (Samui 2008; Smola and Schölkopf 

2004), by introducing some positive slack variables ( ), to measure deviations 

of the training vectors outside the ε-insensitive zone. Thus, the problem can be 

formulated as a convex optimization problem 

 

 
The parameter C is used to specify the trade-off between smoothness 

(model complexity) and the number of deviations larger than the parameter ε that 

are tolerated (Smola and Schölkopf 2004; Vapnik 2000). For instance, if the value 

of parameter C is too large, then the optimization problem is only to minimize the 

empirical risk (training error), without regard to minimizing the prediction risk 
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(testing error), which leads to the possibility of an over-fitting phenomenon 

appearing (Ceperic et al. 2014; Cherkassky and Ma 2004). The parameter ε 

controls the width of the ε-tube, which is used to fit the training data (Vapnik 

2000). If the value of ε is too large, it results in few support vectors (most data 

points will fit inside the ε-tube) and, consequently, in a less complex (smoother) 

regression function. Unfortunately, the resulting SV regression model is not 

continually applicable (it may result in large prediction errors) (Üstün et al. 2005). 

The final SVR function can be written as follows: 

  

 
Where  is the kernel function that satisfies Mercer’s conditions (Smola and 

Schölkopf 2004). 

 

It is well known that the generalization performance of SVR (the 

prediction accuracy of unseen data) depends strongly on a proper setting of the 

hyper-parameters C and ε and the kernel parameter . Consequently, we focus on 

the choice of these parameters. A radial basis function (RBF) kernel is applied, 

since this is the most frequently used and could provide better performance than 

other kernel functions (Cherkassky and Ma 2004; Liu and Hu 2013), with a width 

parameter  that reflects the input range  of the training/testing data sets 

(Cherkassky and Ma 2004; Schölkopf et al. 1999). The RBF kernel can be stated as 

in the next equation: 

 

 
 

 
 

3. Proposed method for parameter selection 

The proposed method selects the values of the parameters C and ε using a 

combination of the practical selection method (Cherkassky and Ma 2004), and the 

grid search method (Hsu et al. 2003). It provides high generalization accuracy with 

a short domain for the grid of parameters, and at the same time it is suitable for 

different additive noise densities. 
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3.1 Selection of parameter C: 

Cherkassky and Ma (2004) proposed a practical approach (Eq. (7)), based 

on the response values (output), to choose the value for the parameter C. 

 

 

Where  and  are, respectively, the mean and standard deviation of the output 

( ) values of the training samples.  

We propose to modify the prescription above by using its confidence 

interval as a short grid for the C parameter domain, using the following formula. 

 

 

 

The proposed modified selection of C that is given by Eq. (8) can yield a 

better C value since it takes several values including the value that is calculated in 

Eq. (7)  

 

3.2 Selection of parameter ε:  

According to Cherkassky and Ma, (2004), Cherkassky & Mulier (1998), 

Kwok (2001), the value of ε should be proportional to the input (additive) noise 

level, that is, . Cherkassky and Ma (2004) proposed the following formula 

for the optimal ε value:  

 

 
The standard deviation of the additive noise  is known or can be 

estimated directly from the data (Cherkassky and Ma 2004). These authors noted 

that this works well for small samples, based on several empirical comparisons, 

and that it yields ε values that are too small (they are practically equal to zero) for a 

large sample size . However, they replace the formula in Eq. (10) by a new 

formulation:  

 

 
However, to find short grid domain for the parameter ε, we propose using 

both formulations (Eqs. (10) and (11)) as lower and upper bounds. Since Eq. (10) 

is practically equal to zero, we propose to replace it by zero (ε = 0) to include 
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Huber’s loss function (least-modulus) that is convenient for Laplacian noise 

density (Cherkassky and Ma 2004; Huber 1964). 

 

 

This is what makes the proposed method suitable for all kinds of additive 

noise densities. 

 

4. Numerical studies for non-linear target functions 

This section illustrates some empirical comparisons for a nonlinear 

regression, with Gaussian and non-Gaussian noise. The performance is measured 

by looking at the prediction risk (Eq. 13), which is defined as the mean squared 

error (MSE) between SVR estimates and the true values of the dependent variable 

for test inputs.  

 

 
 

We consider the prediction risk to compare the results more confidently: 

the mean squared testing error (MSET). The prediction risk is averaged over 100 

replications of random data sets. Comparison results are obtained by applying the 

proposed method and the practical selection (PLSN) method for the same data sets. 

The performances of the two methods (the proposed method and the PLSN 

method) are tested on three different sample sizes. Space limitations mean that we 

are confined to illustrate this by a single sample per example. The other results can 

be obtained by E-mail from the author. All calculations were carried out using R 

software.  

 

4.1 Numerical studies for Gaussian noise 

We investigate three different regression models. The first example is for a 

univariate regression, and the next two examples are for multivariate regressions 

(two- and five-dimensional target functions). The -values of the data are sampled 

according to a uniform distribution, and the -values are generated based on 

different statistical models. The -values of the data are corrupted by additive 

noise ( ) with zero mean and standard deviation (σ). For the multivariate -

dimensional problems, all  input variables are scaled to the [0-1] range. This 

procedure yields good SVR performance for various data sets. 
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4.1.1 Example 1 
The first example compares the results based on the univariate target 

function in Eq. (14) with different noise levels (σ). Four data sets are generated for 

a small training sample ( ), with testing sample ( ). The RBF kernel 

is used with width parameter . 

 

 
 

The results of applying the proposed method and the PLSN method for 

these data sets are shown in Table 1 and Figure 1, respectively. 

 

Table 1: Results for univariate target function (n=30, nt=146) 

Data set Methods Noise level C-selection ε -selection MSET %SV 

1 
PLSN 

Proposed 
0.02 

1.21 

1.09 - 1.34 

0.02 

0 - 0.02 

0.2821 

0.2681 

77 

77 

2 
PLSN 

Proposed 0.2 
1.30 

1.16 - 1.44 

0.2 

0 – 0.2 

0.9347 

0.5356 

50 

67 

3 
PLSN 

Proposed 
0.5 

1.77 

1.57 - 1.96 

0.5 

0 – 0.5 

2.7876 

2.0587 

30 

100 

4 
PLSN 

Proposed 
1 

2.89 

2.57 - 3.22 

1.01 

0 – 1.01 

9.4689 

6.3164 

30 

57 

 

 

Figure 1: The MSET for univariate target function (n=30, nt=146)  
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From Table 1, we see that the proposed technique for selecting C and ε is 

better than PLSN, as it yields lower MSET (providing smallest prediction risk). On 

the other hand, it gives support vectors for around 50% of the training data, 

whereas the PLSN has a reduced SV percentage far below 50% when the noise 

level is increased. In this case, the resulting SV regression model is not always 

applicable (Üstün et al. 20005). 

Figure 1 clearly shows that the proposed method gives better accuracy than 

the PLSN method. The criterion of prediction risk shows the superiority of the 

proposed method over the PLSN method. In the case of low noise level, the 

difference between the two methods is not great, but it grows when the noise level 

is increased.  

4.1.2 Example 2 
This example demonstrates the results of the SV regression parameter 

selection for multivariate problems. Different noise levels (σ) are used to generate 

data sets for a two-dimensional target function (Eq. 15) with training and testing 

samples ( ), respectively. The RBF kernel is utilized with width 

parameter . 

 

 
 

Table 2 compares the results of the proposed method with those using the 

PLSN method. The prediction risk that is calculated based on the different noise 

levels for the two methods (proposed and PLSN) are represented in Table 2 and 

graphically in Figure 2. 

 

Table 2: Results for two-dimensional target function (n=100, nt=200) 

Data set Methods Noise level C-selection ε -selection MSET %SV 

1 
PLSN 

Proposed 
0.1 

1.29 

1.25 - 1.32 

0.064 

0 - 0.064 

0.0692 

0.0512 

63 

69 

2 
PLSN 

Proposed 0.2 
1.47 

1.42 - 1.52 

0.13 

0 - 0.13 

0.2446 

0.1815 

61 

64 

3 
PLSN 

Proposed 
0.3 

1.71 

1.65 - 1.78 

0.19 

0 - 0.19 

0.5395 

0.3866 

61 

61 

4 
PLSN 

Proposed 
0.4 

1.98 

1.88 - 2.07 

0.26 

0 - 0.26 

0.9352 

0.5341 

61 

66 
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Figure 2: The MSET for two-dimensional target function (n=100, nt=200)   

 

From the empirical results in Table 2, the proposed method has better 

performance than the PLSN method. Figure 2 shows that the proposed method has 

better generalization ability (prediction risk) than the PLSN method, in the case of 

testing error. One can see that the difference between the two methods increases 

with increasing noise levels. 

 

4.1.1 Example 3 
In order to show the performance of the proposed approach, we consider a 

higher-dimensional target function (Eq. 16) with -values generated in the interval 

[-2, 2]. The response values are corrupted by different additive noise levels (σ). 

The results are obtained by applying SV regression for parameter selection with 

training sample ( ) and testing sample ( ). 

 

 
 

The results between the estimates for the proposed method and the 

estimates obtained by utilizing the PLSN approach are compared in Table 3 in 

terms of prediction risk (MSET) and the percentage of support vectors. Clearly, the 

parameter selection based on the proposed method is more effective in terms of 

prediction risk. The same conclusion, that the proposed method is more effective 

than the PLSN method, can be drawn from Figure 3.  
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Table 3: Results for higher-dimensional target function (n=250, nt=500) 

Data set Methods Noise level C-selection ε -selection MSET %SV 

1 
PLSN 

Proposed 
0.1 

2.26 

2.17 - 2.35 

0.045 

0 - 0.045 

0.8041 

0.7898 

95 

98 

2 
PLSN 

Proposed 0.2 
2.33 

2.24 - 2.42 

0.09 

0 – 0.09 

0.8848 

0.8107 

88 

97 

3 
PLSN 

Proposed 
0.5 

2.74 

2.63 - 2.85 

0.22 

0 – 0.22 

1.4630 

1.2840 

78 

96 

4 
PLSN 

Proposed 
0.6 

2.92 

2.81 – 3.04 

0.27 

0 – 0.27 

1.7729 

1.6845 

75 

90 

 

 

Figure 3: The MSET for higher-dimensional target function (n=250, nt=500) 

 

4.2 Numerical studies for non-Gaussian noise 

In this section, the proposed technique is compared with the PLSN method 

for parameter selection when the response variable is contaminated by non-

Gaussian noise. The -values of the data are sampled based on a uniform 

distribution, and the -values are generated based on two statistical models 

(univariate and bivariate target functions). The output values (response) of the data 

are corrupted by additive non-Gaussian noise (Student’s t-distribution noise) with 

different degrees of freedom (DOF), 50 and 100. 
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4.2.1 Example 4 
In this example the univariate target function (Eq. 17) with different noise 

levels (σ) is used to generate four data sets for a small training sample ( ), 

with testing sample ( ) and DOF = 50. The RBF kernel is used with width 

parameter . 

 

 
Table 4 demonstrates the comparison of the regression estimates that are obtained 

using the proposed method and the PLSN method. To read the results more clearly, 

the prediction risk (MSET) for the two methods (proposed and PLSN) are 

displayed graphically in Figure 4. It can be seen from Table 4 that, for the PLSN 

method, the percentage of support vectors decreases when the noise level is 

increased, which leads to weak generalization ability (high prediction errors). On 

the other hand, the superior performance of the proposed method over the PLSN 

method can be observed in Figure 4. From the prediction risks and the percentage 

of support vectors, the proposed method is more effective than the PLSN approach. 

 

Table 4: Results for univariate target function (n=30, nt=60, DOF=50) 

Data set Methods Noise level C-selection ε -selection MSET %SV 

1 
PLSN 

Proposed 
0.1 

2.53 

2.38 - 2.68 

0.1 

0 - 0.1 

0.1324 

0.1086 

43 

60 

2 
PLSN 

Proposed 0.2 
2.57 

2.41 - 2.73 

0.2 

0 – 0.2 

0.3127 

0.2529 

33 

57 

3 
PLSN 

Proposed 
0.4 

2.78 

2.59 - 2.97 

0.4 

0 – 0.4 

0.8849 

0.6939 

30 

77 

4 
PLSN 

Proposed 
0.6 

3.11 

2.88 - 3.33 

0.6 

0 – 0.6 

1.8209 

1.6343 

27 

63 

 

4.2.2 Example 5 
The second comparison, in this section, is for a two-dimensional target 

function (Eq. 18). Different noise levels (σ) are used to generate four data sets for a 

training sample and testing sample ( ), respectively, with DOF 

equal to 100. The comparison of the two methods (proposed and PLSN) is 

explained in Table 5 and Figure 5. It can be seen that the proposed approach shows 

better performance than the PLSN method, in terms of mean square testing error. 
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Figure 4: The MSET for univariate target function 

(n=30, nt=60, DOF=50) 

 

 

 

 

Figure 5: The MSET for two-dimensional target function 

 (n=100, nt=200, DOF=100) 
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Table 5: Results for two-dimensional target function  

(n=100, nt=200, DOF=100) 

Data set Methods Noise level C-selection ε -selection MSET %SV 

1 
PLSN 

Proposed 
0.1 

2.46 

2.32 - 2.59 

0.064 

0 – 0.064 

0.6539 

0.5807 

81 

99 

2 
PLSN 

Proposed 0.2 
2.55 

2.40 - 2.69 

0.13 

0 – 0.13 

0.8418 

0.7745 

75 

82 

3 
PLSN 

Proposed 
0.4 

2.80 

2.64 - 2.96 

0.26 

0 – 0.26 

1.3440 

1.1829 

64 

92 

4 
PLSN 

Proposed 
0.6 

3.14 

2.95 - 2.32 

0.39 

0 – 0.39 

2.2639 

2.0114 

63 

66 

 

 
5. Conclusion 

This article describes a hybrid technique that combines the PLSN method 

and the grid search procedure for setting the free parameters for an SV regression. 

This combination is to minimize the time duration of the perform the grid search 

technique and to enhance the generalization ability of the practical selection of 

Cherkassky and Ma (2004).The proposed approach finds the optimal values of the 

parameters C and ε based on a short domain (grid) of parameters. A number of 

empirical comparisons demonstrate that the proposed approach for selecting the 

parameters yields better generalization performance of SVR than the PLSN for 

various target functions, noise levels, types of noise and sample sizes. 
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